Myocardial subproteomic analysis of a constitutively active Rac1-expressing transgenic mouse with lethal myocardial hypertrophy.
نویسندگان
چکیده
A two-dimensional gel electrophoresis (2-DE)-based proteomic approach was used to study a transgenic mouse model of acerbated dilated cardiomyopathy in which the small monomeric GTPase, Rac1, was constitutively expressed exclusively in the myocardium. A subfractionation procedure allowed for the focused analysis of both cytoplasmic and myofilament protein-enriched extracts of ventricular tissue from Rac1 transgenic and age-matched nontransgenic (NTG) mice. The majority of these mice displayed severe hypertrophy (heart-to-body weight ratios >2-fold greater in the Rac1 mice) and died from overt heart failure between days 14 and 17. Comparative 2-DE analysis (pH 3-10, 12% SDS-PAGE) derived from Rac1 (n = 4) and NTG (n = 4) groups revealed differences in mean protein spot intensities. Twelve proteins from the cytoplasmic protein-enriched extract met our criteria for robustness and spot resolution and were identified. These proteins represent a broad distribution of cellular functions with only some previously implicated in myocardial hypertrophy. The myofilament subproteome displayed no change in posttranslational modification, but further analysis by one-dimensional Western blot showed increased quantities of myofilament proteins in the Rac1 mouse ventricles. Additionally, three proteins with different functionality that were altered in the cytoplasmic protein-enriched subproteome, tubulin beta-chain, manganese superoxide dismutase, and malate dehydrogenase, were analyzed at days 7, 9, and 11 to assess their role in the development of the dilated cardiomyopathic phenotype. The quantity of all three proteins peaked at day 9, suggesting an early response in cardiac hypertrophic failure.
منابع مشابه
Small guanine nucleotide-binding proteins and myocardial hypertrophy.
The small (21 kDa) guanine nucleotide-binding protein (small G protein) superfamily comprises 5 subfamilies (Ras, Rho, ADP ribosylation factors [ARFs], Rab, and Ran) that act as molecular switches to regulate numerous cellular responses. Cardiac myocyte hypertrophy is associated with cell growth and changes in the cytoskeleton and myofibrillar apparatus. In other cells, the Ras subfamily regula...
متن کاملExpressions of CD11a, CD11b, and CD11c integrin proteins in rats with myocardial hypertrophy
Objective(s):To examine the expressions of CD11a, CD11b, and CD11c integrins in the myocardial tissues of rats with isoproterenol-induced myocardial hypertrophy. This study also provided morphological data to investigate the signal transduction mechanisms of myocardial hypertrophy and reverse it. Materials and Methods: A myocardial hypertrophy model was established by subcutaneously injecting i...
متن کاملCalcineurin signalling mechanisms in myocardial hypertrophy
Calcineurin dephosphorylates multiple serine residues near the N terminus of NFAT proteins enabling them to translocate from cytoplasm to nucleus, where they activate a subset of hypertrophic response genes. Transgenic mice over-expressing a constitutively active form of calcineurin or NFAT3, developed obviously hypertrophy and heart failure or sudden death proving its pathogenic role. Here we ...
متن کاملMyocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy.
Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with card...
متن کاملCardiomyocyte-specific overexpression of an active form of Rac predisposes the heart to increased myocardial stunning and ischemia-reperfusion injury.
The GTP-binding protein Rac regulates diverse cellular functions including activation of NADPH oxidase, a major source of superoxide production (O(2)(·-)). Rac1-mediated NADPH oxidase activation is increased after myocardial infarction (MI) and heart failure both in animals and humans; however, the impact of increased myocardial Rac on impending ischemia-reperfusion (I/R) is unknown. A novel tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005